Field Theory and Mathematics Panel at the THE FUTURE OF PHYSICS Conference

Saturday, October 9, 2004 Kavli Institute for Theoretical Physics

Moderator: Joseph Polchinski

Panelists: Hirosi Ooguri, Alexander Polyakov, Misha Shifman, Isadore Singer, Robert Sugar

M. Shifman:

Unlike some models whose relevance to Nature is still a big "?", Quantum Chromodynamics will stay with us forever.

QCD is a very rich theory supposed to describe the widest range of strong interaction phenomena: from nuclear physics to Regge behavior at large E, from color confinement to quark-gluon matter at high densities/temperatures (neutron stars); the vastest horizons of the hadronic world: chiral dynamics, glueballs, exotics, light and heavy quarkonia and mixtures thereof, exclusive and inclusive phenomena, interplay between strong forces and weak interactions, The coupling constant can be strong or "medium" strong.

That is why I do not expect the full analytic solution to QCD to be found.

I am not a prophet, though, and have no direct line to God.¹ Therefore, in trying to make a prediction for the next 25 years, let me ask which breakthrough advances of nonperturbative QCD of today could have been forseen 25 years ago.

By the year 1980:

- the OPE-based methods were on the rise;
- some crucial low-energy theorems shedding light on the QCD vacuum structure established;
 - dual Meissner effect for color confinement conjectured;
 - 1/N expansion as a useful classification tool suggested:
- SUSY gauge theories constructed and studied (almost exclusively, in the perturbative sector);
 - instantons/monopoles discovered;
 - hypothesis of the monopole-particle duality in $\mathcal{N}=4$ put forward.

¹Speaking of prophets, let me mention Joseph Glanvill's book *Vanity of Dogmatizing*, published in London in 1661. In this book Joseph Glanvill, one of the founding members of Britain's Royal Society, writes: "To them that come after us it may be as ordinary to buy a pair of wings to fly into remotest Regions; as now a pair of Boots to ride a Journey. [...] The restauration of grey hairs to Juvenility, and renewing the exhausted marrow, may at length be effected without a miracle. And the turning of the now comparatively desert world into a Paradise, may not improbably be expected from late Agriculture." (The quotation courtesy of Lev Okun). The last prophecy, though, is still not quite *fait accompli* — for social rather than agricultural reasons.

This is all. Hints were there, but who could have guessed?

Now:

- OPE-based methods culminated in the 1990's;
- 1/N expansion became semi-quantitative in some problems;
- Triumph of SUSY-based methods for QCD cousins is unquestionable (A significant tool kit developed; the dual Meissner effect in $\mathcal{N}=2^*$ proven! Dualities in $\mathcal{N}=1$ discovered!);
- \bullet String and QCD practitioners are finally talking to each other, to their mutual benefit. Strings \leftrightarrow QCD. E.g. SYM "D-branes"

Predictions:

(indirectly depend on external factors, such as SUSY discovery at LHC,...)

- \star SUSY-based methods will proliferate, allowing one to treat *closer* relatives of QCD, as well as important aspects of QCD *per se*;
- ** These methods will spread to some other strongly-coupled theories, e.g. those relevant to condensed matter physics;
- $\star\star\star$ The gap between string theories and *realistic* strong-coupling gauge theories will continue to narrow, with two-way exchange of ideas;
- $\star\star\star\star$ Combination of SUSY-based methods and 1/N expansion will grow into a powerful *quantitative* tool.

In summary, I expect a "hydrogen atom" of nonperturbative QCD to be found along these lines.

Unlike models whose relevance to nature is? QCD will stay with us

QCD is extremely rich:

- ★ Nuclear Physics
 - * Regge behavior
 - \bigstar QGM: high-T/high μ (neutron stars)
 - Richness of the hadronic world:
- chiral;
- 🖈 light & heavy quarkonia;
- # glueballs & exotics;
- * exclusive & inclusive phenomena;
- * interplay between strong forces & weak interactions...

That's why I do not expect **FULL** analytic solution to QCD to be found

To normalize my predictions for next 25 years let me ask: "advances of nonpert. QCD forseen 25 years ago?"

By the year 1980:

```
        ★ OPE-based methods on the rise (peaked in 90's);

        ★ Low-energy theorems (a few extra added in 90's);

        ★ Dual Meissner effect for confinement conjectured;

        ★ 1/N expansion → useful classification tool;

        ★ SUSY gauge field theories (pert);

        ★ Instantons & monopoles discovered

        ★ Monopole-particle duality in N=4 conjectured
```

```
Now:

* 1/N became semi-quantitative;

* Triumph of SUSY-based methods for QCD cousins (e.g. N=2);

* Strings → QCD, e.g. SYM "D-branes";

* Dualities in gauge theories, sigma models ...
```

Predictions (indirectly depend on external factors, e.g. LHC):

SUSY-based methods will proliferate

Gap between strings and "realistic" gauge theories will narrow from both sides

Combination of SUSY and 1/N (or g_{st}) will become a quantitative tool

Closer relatives of QCD

Aspects of QCD per se

Other str-coupl. theories/cond.matter

A "hydrogen atom" of nonperturbative QCD will be found along these lines